A refinement of Vietoris’ inequality for cosine polynomials
نویسندگان
چکیده
منابع مشابه
Extension of Vietoris’ Inequalities for Positivity of Trigonometric Polynomials
In this work, conditions on the coefficients {ak} are considered so that the corresponding sine sum n ∑ k=1 ak sin kθ and cosine sum a0 + n ∑ k=1 ak cos kθ are positive in the unit disc D. The monotonicity property of cosine sums is also discussed. Further a generalization of renowned Theorem of Vietoris’ for the positivity of cosine and sine sums is established. Various new results which follo...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولRefinement of Hardy’s Inequality
We give a simple combinatorial proof of an inequality that refines Hardy’s inequality. As a corollary we obtain a corresponding refinement of Carleman’s inequality.
متن کاملRoot Refinement for Real Polynomials
We consider the problem of approximating all real roots of a square-free polynomial f . Given isolating intervals, our algorithm refines each of them to a width of 2−L or less, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only considering finite approximations of the polynomial coefficients an...
متن کاملAn inequality for chromatic polynomials
Woodall, D.R., An inequality for chromatic polynomials, Discrete Mathematics 101 (1992) 327-331. It is proved that if P(G, t) is the chromatic polynomial of a simple graph G with II vertices, m edges, c components and b blocks, and if t S 1, then IP(G, t)/ 2 1t’(t l)hl(l + ys + ys2+ . + yF’ +spl), where y = m n + c, p = n c b and s = 1 t. Equality holds for several classes of graphs with few ci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Applications
سال: 2016
ISSN: 0219-5305,1793-6861
DOI: 10.1142/s021953051550013x